
Pointers and Dynamic
Memory in C++
A ready-made lecture plan with practical examples for studying one of the
most important topics in C++ programming. Understanding pointers is key
to efficient memory management and creating high-performance
applications.

https://gamma.app/?utm_source=made-with-gamma

Lecture Structure
01

Introduction to Pointers

Basic concepts and purpose of pointers in
programming

02

Syntax Fundamentals

Operators & and *, pointer types, and
working with addresses

03

Pointers and Functions

Passing parameters by pointer and
modifying values

04

Dynamic Memory

New/delete operators and memory management

05

Arrays and Pointers

Relationship between arrays and pointers, pointer arithmetic

https://gamma.app/?utm_source=made-with-gamma

What is a Pointer?

Definition

A pointer is a variable that
stores the memory address of
another variable

Why are they needed?

Working with arrays

Dynamic data structures

Efficient data transfer

Accessing memory

From abstract code to direct interaction with computer memory

https://gamma.app/?utm_source=made-with-gamma

Pointer Syntax
Fundamentals

Key Operators

& 4 get variable address

* 4 dereference pointer

int* 4 declare a pointer to an
int

int a = 10;
int *p = &a;
cout << "Value: " << *p;
cout << "Address: " << p;

Code Example

This code demonstrates basic operations: getting the address of variable a
and working with pointer p to access the value.

https://gamma.app/?utm_source=made-with-gamma

Pointers in Functions

1
Pass by Pointer

An alternative to references for modifying variables

2
Modification outside function

Ability to change variable values from other scopes

void increment(int *x) {
 (*x)++;
}
int main() {
 int a = 5;
 increment(&a); // a F5?5@L @46=> 6
}

https://gamma.app/?utm_source=made-with-gamma

Dynamic Memory

Static Allocation

Memory is allocated at compile
time, size is fixed

Dynamic Allocation

Memory is allocated at runtime
using new

Memory Deallocation

Mandatory use of delete to prevent leaks

Important! Each call to new must be matched by a call to delete

https://gamma.app/?utm_source=made-with-gamma

Dynamic Arrays

int n;
cout << "Enter size: "; // �6548F5 D47<5D:
cin >> n;

int *arr = new int[n]; // dynamically allocate array

for (int i = 0; i < n; i++) {
 arr[i] = i * i; // fill with squares of numbers
}

for (int i = 0; i < n; i++) {
 cout << arr[i] << " ";
}

delete[] arr; // free memory

This example demonstrates creating an array with a size determined at
program runtime.

https://gamma.app/?utm_source=made-with-gamma

Relationship between Arrays
and Pointers

1 Array Name

Pointer to the first element

2 Pointer Arithmetic

p+1 points to the next element

3 Accessing Elements

*(p+i) is equivalent to arr[i]

int arr[3] = {10, 20, 30};
int *p = arr;
cout << *p << endl; // 10
cout << *(p + 1) << endl; // 20
cout << *(p + 2) << endl; // 30

https://gamma.app/?utm_source=made-with-gamma

Key Takeaways
Direct Memory Access

Pointers allow direct interaction with memory addresses

Flexible Memory Management

`new` and `delete` operators provide dynamic allocation

Close Relationship with Arrays

Understanding pointers is critical for working with arrays

Caution with Errors

Incorrect pointer usage is a common cause of crashes

https://gamma.app/?utm_source=made-with-gamma

Review Questions

Pointer Operators

What is the difference
between the & and *
operators?

Array Types

What is the difference
between a static and a
dynamic array?

Memory Management

What happens if you forget to call delete?

Ready to move on to practical seminar sessions? The next step is creating
dynamic data structures and solving pointer-related problems!

https://gamma.app/?utm_source=made-with-gamma

