Pointers and Dynamic
Memory in C++

A ready-made lecture plan with practical examples for studying one of the
most important topics in C++ programming. Understanding pointers is key
to efficient memory management and creating high-performance

applications.

3
- n %
4 i
i 4
. el oo
-+- (om Clat <va € 4)
(v gaEttiam Ce1:
cat L11 = = C+ab Tln, Warf, v, (tal}
ckol tuee
farmietiumal Bry clevlo, my rifan in in ().
Err fedtre Flelel);

the lalscic footevele Coonabietoni (I
Cexslia)

1]

€oeee = tatton ()
{eracciey Goliowe (stoale);
1
L. e culap:
. iant Lan
CLedinLEnely
cetr tine cnzier (teraleetlo)
Tie
0

| 5}

Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

Lecture Structure

01 02 03

Introduction to Pointers Syntax Fundamentals Pointers and Functions

Basic concepts and purpose of pointers in Operators & and *, pointer types, and Passing parameters by pointer and
programming working with addresses modifying values

04 05

Dynamic Memory Arrays and Pointers

New/delete operators and memory management Relationship between arrays and pointers, pointer arithmetic

< Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

§a==~c-mass_£<=nb

What is a Pointer? |
o3 .
S | =
Definition Why are they needed? Se '
A pointer is a variable that e Working with arrays , : /
another variable . s
o Efficient data transfer .

Accessing memory

From abstract code to direct interaction with computer memory

SIS

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

cyer 1
tode [
eopoetiba Cle++ vl fis at +
Thite <o [,
reti;len= Co 'llearieno chale plope:s

"_ W CoE b Cava Lao #br
. por cataetloer (oatunt Imicaslection: €
cgre (dnsztloeixnon
b

Paare anocaly lust veplal &n reponfefifelas cnabLly):
hene Lotalatliop. .

crboz: wonc coclppleetla);
;)

kowve canatiner (Islen LT;
5§l Cunatanitg '3
cudw anand 4+ & = 1e11/)
-]
2 enlnxer ln 1ts por-)
+ apaling contill)
?

code Thee Las in oudln L 13
ceber in part. Loghe {

.
+) cher 2chen desos (9;
~ v exetlen 1):
- i - heor (sucet/yloealaot velate nneedld);
R ~ hepge 1itelr lis 3
7NN ext Cles-(:
. ceprccrar ((Eplls coecertlon, odllceey:

pnl “[sntice 'Ln wikin-raga))
ench foneld;
tor Lex eralt in #p luon (pucer jabholillicare’);
1
+ heeclen)
. 4 pode lecealslesice an your lectaziel)
fer citer frice to gose cen Lyll:

cor alntiene Lope fae \};
epr-icast chnpe cdkers LY O}
fer (essinciing cnmpper Langet ceesien:fonll);:

3)

Pointer Syntax
Fundamentals

Key Operators

e & — getvariable address
e * __ dereference pointer

e int* — declare a pointer to an
int

Code Example

inta=10;

int *p = &a;

cout << "Value: " << *p;
cout << "Address: " << p;

This code demonstrates basic operations: getting the address of variable a
and working with pointer p to access the value.

(Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

Pointers in Functions

Pass by Pointer

L An alternative to references for modifying variables
Modification outside function

2 Ability to change variable values from other scopes

void increment(int *x) {

(*X)++;

}

int main() {

inta=>5;

increment(&a); // a Tenepb paBHO 6
}

C Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

Dynamic Memory

Static Allocation

Memory is allocated at compile
time, size is fixed

Dynamic Allocation

Memory is allocated at runtime
using new

Memory Deallocation

Mandatory use of delete to prevent leaks

[J Important! Each call to new must be matched by a call to delete

. N

https://gamma.app/?utm_source=made-with-gamma

Dynamic Arrays

int n;
cout << "Enter size: ", // BBeanTe pa3mep:
cin>>n;

int *arr = new int[n]; // dynamically allocate array

for (inti=0;i<n;i++){
arr[i] =i *i;, //fill with squares of numbers

}

for (inti=0;i<n;i++){
cout << arrfi]<<"";

}

delete[] arr; // free memory

This example demonstrates creating an array with a size determined at
program runtime.

https://gamma.app/?utm_source=made-with-gamma

Relationship between Arrays
and Pointers

1 Array Name

Pointer to the first element

2 Pointer Arithmetic

p+1 points to the next element

3 Accessing Elements

*(p+i) is equivalent to arrl[i]

int arr[3] ={10, 20, 30};

int *p = arr;

cout << *p << endl; // 10
cout << *(p + 1) << endl; // 20
cout << *(p + 2) << endl; // 30

Made with GANMIMA

https://gamma.app/?utm_source=made-with-gamma

@ Innersciom

B @l Ov e v noe Sy T reoi G Ly
|

Key Takeaways

Direct Memory Access

Pointers allow direct interaction with memory addresses

Close Relationship with Arrays

Understanding pointers is critical for working with arrays

Asenieglion X ’
Fifidesy s b Uit Peids’ Bef SinE W ot Bl o baed D ™

Flexible Memory Management

‘new and delete operators provide dynamic allocation

Caution with Errors

Incorrect pointer usage is a common cause of crashes

< Made with GANMIMA)

https://gamma.app/?utm_source=made-with-gamma

Review Questions

11 11
Pointer Operators Array Types
What is the difference What is the difference
between the & and * between a static and a
operators? dynamic array?
9y b
11

Memory Management

What happens if you forget to call delete?
&

Ready to move on to practical seminar sessions? The next step is creating
dynamic data structures and solving pointer-related problems!

Made with GANMIMA
et

https://gamma.app/?utm_source=made-with-gamma

